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47 families of minimal surfaces with straight self-intersections have been derived

which subdivide R3 into a ®nite number of congruent three-periodic labyrinths.

In most of these cases, namely for 42 families, the number of labyrinths is two.

Four congruent labyrinths have been found three times and eight congruent

labyrinths twice. Minimal surfaces with three or six labyrinths seem not to exist.

Most of these minimal surfaces are non-orientable. The surfaces of three

families only are orientable ones.

1. Introduction

Each intersection-free three-periodic minimal surface is

necessarily an orientable surface, i.e. it has two sides that may

be coloured differently. As a consequence, it subdivides R3

into two in®nite three-periodic labyrinths that interpenetrate

each other (cf. Fischer & Koch, 1996b; Koch & Fischer, 1999,

and references cited therein). If there exists any straight line

running within a minimal surface, this line is a twofold rotation

axis and the surface is called a spanning minimal surface

(Fischer & Koch, 1996b). The symmetry of a three-periodic

spanning minimal surface without self-intersections is best

described by a space-group pair G±S, where G means the full

symmetry group of the non-oriented (uncoloured) surface and

S stands for the symmetry of the oriented surface and, in

addition, for the symmetry of each of the two labyrinths. S is

always a subgroup of G with index 2.

In contrast to this, self-intersecting three-periodic minimal

surfaces may be either orientable or non-orientable. They give

rise to a variety of spatial subunits which may differ in their

periodicity and connectivity (Fischer & Koch, 1996b). In the

following, all those three-periodic minimal surfaces with

straight self-intersections are treated that subdivide R3 into

three-periodic labyrinths and that could be derived by the

methods described previously (Koch & Fischer, 1999). The

generating polygons of all these surfaces have the following

common property. There exist at least two polygon edges

without a common vertex and without self-intersection of the

surface along these edges. Except for the two families of

minimal surfaces with eight labyrinths, these two edges do not

run parallel to each other.

A new kind of reference symbol for three-periodic minimal

surfaces with straight self-intersections will be used. The

symbol of an orientable surface starts with OR, that of a non-

orientable one with NO, followed by 32, 34 or 38, depending on

the number nlab of three-periodic labyrinths caused by the

surface. Each symbol is completed by a small letter indicating

the crystal system of the surface symmetry (c stands for cubic,

h for hexagonal, t for tetragonal and o for orthorhombic) and

an arbitrary numbering. Surfaces symbolized by oNO32±t1 are

orthorhombic variants of tetragonal NO32±t1 surfaces.

2. Non-orientable minimal surfaces

Tables 1 and 2 describe the properties (cf. Koch & Fischer,

1999) of 44 families of non-orientable surfaces with straight

self-intersections. In column 1, each family is designated by its

reference symbol. Column 2 of Table 1 shows the full

symmetry group G of the surface, completed by the site

symmetry (if it is higher than 1) of the generating polygon.

Column 3 describes the generating polygon itself. The Euler

characteristic � of the minimal surface, referred to a primitive

unit cell of G, is given in column 4. The next column displays

the number b of branch points per primitive unit cell of G. The

number l of surface patches forming a shortest Moebius strip,

i.e. a shortest odd-membered closed ring, is indicated in

column 6. The next three columns refer to the labyrinths

formed by the surface. The symmetry group Ulab of one

labyrinth is described in column 7, the number nlab of labyr-

inths is given in column 8, and the Euler characteristic �lab of a

labyrinth in column 9. It should be noticed that �lab is always

referred to a primitive unit cell of Ulab, which may be m times

larger than a primitive unit cell of G. To enable an easier

comparison of � and �lab, the last column of Table 1 shows the

ratio r = m�/�lab.

For each minimal surface described in Table 1, the vertices

of a generating polygon are listed in the second column of

Table 2 in consecutive order. A single line separates the

coordinate triplets of two vertices corresponding to a polygon

edge without self-intersection. A double line indicates the

intersection of two parts of the surface along the respective

polygon edge, whereas the intersection of three, four or even

six parts is symbolized by | 3 |, | 4 | or | 6 |, respectively. If a
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vertex corresponds to a branch point of the surface, its coor-

dinates are printed in bold type. Reference symbols used in

previous papers (Fischer & Koch, 1996a,b) are shown in the

last column of Table 2.

In contrast to orientable surfaces, the Euler characteristic �
of a non-orientable minimal surface may be an even or an odd

number (cf. Table 1). The Euler characteristic �lab of a three-

periodic labyrinth, however, is necessarily even, because �lab

may also be interpreted as the Euler characteristic of the

(necessarily orientable) surface of the labyrinth.

The following relation holds for all minimal surfaces giving

rise to nlab labyrinths:

r � m�=�lab � 1
2 nlab: �1�

As a consequence, a labyrinth may be at most as complicated

as the corresponding surface (nlab = 2, r = 1). For 22 of the 39

families of non-orientable minimal surfaces with two labyr-

inths, r equals 1. This is true exactly for those surfaces that

have exclusively lines of self-intersections that run parallel to

each other or, at least, that do not intersect each other. In

these cases only, each vertex of a generating polygon enters

into the calculations of � and �lab with the same weight [cf.

Koch & Fischer (1999), formulae (3) and (7)]. The largest

value r = 5/2 is observed for the NO32±c4 surfaces, a family

already described by Schoen (1970).

The group±subgroup pair G±Ulab may be interpreted as a

black±white space group in the case of nlab = 2 or as a space

group that permutes four or eight colours in the case of

nlab = 4 or nlab = 8, respectively. For nlab = 2, Ulab maps each

labyrinth onto itself, whereas all symmetry operations from

the coset of Ulab in G interchange the two (differently

coloured) labyrinths. Figs. 1 to 4 show examples of self-inter-

secting non-orientable minimal surfaces forming two labyr-

inths. All pictures of minimal surfaces have been calculated

with the aid of the program SURFACE EVOLVER (Brakke,

1992). The input ®les for SURFACE EVOLVER have been

prepared by our own program EVOLVERPREP, which

Figure 1
Part of an NO32±c2 surface with symmetry G = I432. One unit cell of
Ulab = P4232 is shown. Polygon edges with self-intersections are marked
in red.

Figure 2
Part of an NO32±h8 surface with symmetry P622. One unit cell of
Ulab = P6322 (2c) is shown. Polygon edges with simple or threefold self-
intersections are marked in red or in yellow, respectively. The common
vertices of three red polygon edges are the branch points of the surface.

Figure 3
Part of an NO32±t4 surface with symmetry G = P422. One unit cell of
Ulab = I422 (a ÿ b, a + b, 2c) is shown. Polygon edges with self-
intersection are marked in red.



generates the required copies of the original surface patch by

means of the symmetry operations of the corresponding

black±white or colour space group.

2.1. Minimal surfaces with four labyrinths

For nlab = 4, the minimal value of r is 2. Three families of

minimal surfaces with nlab = 4 have been found, two with

r = 5/2 (NO34±t1 and NO34±t2) and one with r = 7/2 (NO34±

t3). In all three cases, G belongs to the space-group type P422

and Ulab is a class-equivalent subgroup of G (type I4122) with

index 4 and with a0 = a ÿ b, b0 = a + b, c0 = 4c. If referred to

the generating polygons from Table 2, the labyrinths may be

represented by the same labyrinth graphs in all three cases:

Considered together, the vertices of all four labyrinth graphs

of such a surface form a point con®guration of P422 4(i) 0, 1
2, z

with z = 1
4 (cf. Fig. 5). The vertex at 0, 1

2,
1
4 is connected to those

at 1, 1
2, ÿ1

4, at ÿ1, 1
2, ÿ1

4, at 1
2, 1, ÿ1

4 and at ÿ1
2, 0, ÿ1

4.

Fig. 6 shows the relations between the groups G, Ulab,

NE(G), NE(Ulab) and G \ NE(Ulab), where NE(G) and

NE(Ulab) are the Euclidean normalizers of G and Ulab,

respectively (cf. International Tables for Crystallography,

1987, Vol. A, ch. 15). The index 4 of Ulab in G corresponds to

the four congruent labyrinths of each surface. As the index of

G \ NE(Ulab) in G equals 2, each space group of type P422 has

two conjugate subgroups of type I4122 with a0 = a ÿ b,

b0 = a + b, c0 = 4c. They are shifted against each other by the

vector c. The ®rst of these subgroups maps, for example, each

of the labyrinths 1 and 3 onto itself, but interchanges the

labyrinths 2 and 4. Then, the second subgroup I4122 maps each

of the labyrinths 2 and 4 onto itself and interchanges 1 and 3.

Two labyrinths with the same labyrinth group are shifted

against each other by the vector 2c. Any of the four labyrinths

is adjacent to the other two labyrinths that have a different

labyrinth group, i.e. labyrinth 1 is adjacent to labyrinths 2 and

4, but is not adjacent to 3, and so on.

As the index of G in NE(G) is 8, for each of the families

NO34±t1, NO34±t2, and NO34±t3 there exist eight congruent

minimal surfaces with identical symmetry group P422.

According to the index 16 of G \ NE(Ulab) in NE(G), the total

number of Euclidean-equivalent subgroups of type I4122 with

a0 = a ÿ b, b0 = a + b, c0 = 4c is 16. They may be grouped into

eight pairs of conjugate subgroups, each of them referring to

another minimal surface out of each family.
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Figure 4
Part of an NO32±o4 surface with symmetry G = P222. One unit cell of
Ulab = C222 (2a, 2b) is shown. Polygon edges with self-intersections are
marked in red.

Figure 5
Vertices of the four labyrinth graphs of an NO34±t1, an NO34±t2 or an
NO34±t3 surface. Edges are shown only for one labyrinth graph.

Figure 6
Subgroup diagram referring to an NO34±t1, NO34±t2 or NO34±t3 surface
(G: symmetry group of the minimal surface; NE(G): Euclidean normalizer
of G; Ulab: symmetry group of a labyrinth; NE(Ulab): Euclidean normalizer
of Ulab; G \ NE(U): intersection group of G and NE(Ulab).
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The four-colour space group corresponding to one of the

pairs P422±I4122 (a ÿ b, a + b, 4c) may be generated by the

same generators as P422 (cf. International Tables for Crys-

tallography, 1987, Vol. A), each supplemented by a permuta-

tion of four elements, e.g. by

t �1; 0; 0� �13��24�;
t �0; 1; 0� �13��24�;
t �0; 0; 1� �1432�;
2 0; 0; z �13��24�;
4� 0; 0; z �1432�;
2 0; y; 0 �1��3��24�:

The respective group of permutations of four elements (or

four colours) has order 8 and is isomorphic to a crystal-

lographic point group of type 422. As already shown by the

generators, it contains even as well as odd permutations. It is

the p-Sylow group ( p = 2) in S4, where S4 is the symmetric

group of degree 4, i.e. the group of all permutations of four

elements (cf. e.g. Hall & Senior, 1964). Fig. 7 shows part of an

NO34±t1 surface with the four labyrinths coloured differently.

2.2. Minimal surfaces with eight labyrinths

For nlab = 8, the minimal value of r equals 4. Two families of

minimal surfaces with eight labyrinths have been found so far,

namely NO38±t1 with r = 4 and NO38±t2 with r = 6. Although

Table 1
Non-orientable minimal surfaces.

Minimal surface Labyrinths

Symbol Symmetry group G Generating polygon � b l Symmetry group Ulab nlab �lab r = m�/�lab

NO32±c1 Pn3Åm±..m 6-gon ÿ14 ± 5 Fd3Åm (2a, 2b, 2c) 2 ÿ24 7/6
NO32±c2 I432±..2 4-gon ÿ3 ± 11 P4232 2 ÿ4 3/2
NO32±c3 I432 6-gon ÿ20 ± 5 I23 2 ÿ16 5/4
NO32±c4 I4132 5-gon ÿ10 4 7 P4132 2 ÿ8 5/2

NO32±h1 P6/mcc±m.. 8-gon ÿ14 4 5 P6Åc2 2 ÿ8 7/4
NO32±h2 P6/mcc±m.. 8-gon ÿ14 ± 7 P6/m 2 ÿ14 1
NO32±h3 P6/mcc±m.. 8-gon ÿ18 ± 5 P6/m 2 ÿ18 1
NO32±h4 P622±..2 8-gon ÿ7 ± 7 P622 (2c) 2 ÿ14 1
NO32±h5 P622±..2 8-gon ÿ9 ± 5 P622 (2c) 2 ÿ18 1
NO32±h6 P622 6-gon ÿ7 2 5 P312 2 ÿ4 7/4
NO32±h7 P622 7-gon ÿ11 2 5 P6322 (2c) 2 ÿ16 11/8
NO32±h8 P622 7-gon ÿ11 2 5 P6322 (2c) 2 ÿ16 11/8
NO32±h9 P622 7-gon ÿ13 2 5 P6322 (2c) 2 ÿ16 13/8
NO32±h10 P6222±..2 6-gon ÿ3 ± 7 P6422 (2c) 2 ÿ6 1

NO32±t1 P4/mcc±m.. 6-gon ÿ6 ± 7 P4/mnc (a ÿ b, a + b) 2 ÿ12 1
NO32±t2 P4/mcc±m.. 8-gon ÿ10 ± 5 P4/m 2 ÿ10 1
NO32±t3 P422±.2. 8-gon ÿ5 ± 5 P422 (2c) 2 ÿ10 1
NO32±t4 P422 5-gon ÿ3 ± 7 I422 (a ÿ b, a + b, 2c) 2 ÿ6 1
NO32±t5 P422 6-gon ÿ4 ± 9 I422 (a ÿ b, a + b, 2c) 2 ÿ8 1
NO32±t6 P422 7-gon ÿ7 ± 5 I422 (a ÿ b, a + b, 2c) 2 ÿ12 7/6
NO32±t7 P422 7-gon ÿ7 ± 7 I422 (a ÿ b, a + b, 2c) 2 ÿ12 7/6
NO32±t8 P422 7-gon ÿ8 ± 5 I422 (a ÿ b, a + b, 2c) 2 ÿ12 4/3
NO32±t9 P422 8-gon ÿ9 ± 3 I422 (a ÿ b, a + b, 2c) 2 ÿ16 9/8
NO32±t10 P4222 6-gon ÿ4 ± 5 I4122 (a ÿ b, a + b, 2c) 2 ÿ8 1
NO32±t11 P4222 6-gon ÿ4 ± 9 I4122 (a ÿ b, a + b, 2c) 2 ÿ8 1
NO32±t12 P4222 7-gon ÿ6 ± 5 I4122 (a ÿ b, a + b, 2c) 2 ÿ8 3/2
NO32±t13 P4222 8-gon ÿ8 ± 5 I4122 (a ÿ b, a + b, 2c) 2 ÿ16 1
NO32±t14 P4222 8-gon ÿ8 ± 5 P42212 (a ÿ b, a + b) 2 ÿ16 1
NO32±t15 P4222 8-gon ÿ8 ± 3 P42 2 ÿ8 1
NO32±t16 P4222 8-gon ÿ8 ± 3 P4322 (2c) 2 ÿ16 1
NO32±t17 P4222 9-gon ÿ10 ± 3 P4322 (2c) 2 ÿ16 5/4

NO32±o1 Pccm±..m 8-gon ÿ4 ± 5 Cccm (2a, 2b) 2 ÿ8 1
NO32±o2 Pccm±..m 10-gon ÿ6 ± 3 P112/m 2 ÿ6 1
NO32±o3 P222±2.. 10-gon ÿ3 ± 3 P222 (2c) 2 ÿ6 1
NO32±o4 P222 7-gon ÿ3 ± 5 C222 (2a, 2b) 2 ÿ6 1
NO32±o5 P222 9-gon ÿ5 ± 3 C222 (2a, 2b) 2 ÿ8 5/4
NO32±o6 P222 9-gon ÿ5 ± 3 C222 (2a, 2b) 2 ÿ10 1
oNO32±t5 P222 7-gon ÿ3 ± 5 F222 (2a, 2b, 2c) 2 ÿ6 1
NO32±o7 P222 11-gon ÿ7 ± 3 F222 (2a, 2b, 2c) 2 ÿ12 7/6

NO34±t1 P422 6-gon ÿ5 ± 7 I4122 (a ÿ b, a + b, 4c) 4 ÿ8 5/2
NO34±t2 P422 6-gon ÿ5 ± 7 I4122 (a ÿ b, a + b, 4c) 4 ÿ8 5/2
NO34±t3 P422 7-gon ÿ7 ± 5 I4122 (a ÿ b, a + b, 4c) 4 ÿ8 7/2

NO38±t1 P42/nbc±1Å 8-gon ÿ8 ± 5 I4Å2d (2a, 2b, 2c) 8 ÿ4 4
NO38±t2 I422±..2 6-gon ÿ3 ± 7 I4122 (2a, 2b, 2c) 8 ÿ4 6



they differ in their symmetry (cf. Table 1), they have several

properties in common.

The symmetry group G of an NO38±t1 surface belongs to

type P42/nbc, the symmetry group Ulab of each of its labyrinths

to type I4Å2d with a0 = 2a, b0 = 2b and c0 = 2c. The index 8 of

Ulab in G (cf. Fig. 8) equals the number of congruent labyrinths

of such a surface. As the index of G \ NE(Ulab) in NE(G) is 16,

each space group of type P42/nbc has 16 Euclidean-equivalent

subgroups of type I4Å2d with a0 = 2a, b0 = 2b, c0 = 2c. According

to the index 4 of G \ NE(Ulab) in G, four times four of these

subgroups are conjugate in G. As a consequence, the eight

labyrinths of an NO38±t1 surface correspond to four conjugate

labyrinth groups, i.e. four times two of these labyrinths have

identical labyrinth symmetry and are shifted against each

other by a vector c.

Given a ®rst labyrinth group of an NO38±t1 surface, a

second one may be derived with the aid of a translation by a

vector a. Then, all 2.., 21.., .2. and .21. axes and the positions of
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Table 2
Generating polygons of non-orientable minimal surfaces.

Symbol Generating polygon Previous symbol

NO32±c1 0 0 0 || 1
2 0 0 | 1

2
1
4 0 | 1

4
1
4

1
4 | 1

4
1
2 0 | 0 1

2 0 ||
NO32±c2 0 0 0 | 1

2
1
2 0 || 1

2
1
2

1
2 | 0 1

2 0 || WF±32

NO32±c3 0 0 0 || 1
2 0 0 || 1

2
1
4 0 | 1

4
1
4

1
4 | 1

4
1
2 0 || 1

2
1
2 0 |

NO32±c4 1
8

1
8

1
8 | 1

4
1
8 0 | 1

4
5
8 0 || 1

8
5
8ÿ1

8 || 1
8

1
2ÿ1

4 | CBP1±32

NO32±h1 0 0 1
4 | 1

2 0 1
4 || 2/3 1/3 1

4 || 1
2

1
2

1
4 | 1

2
1
2

3
4 || 2/3 1/3 3

4 || 1
2 0 3

4 | 0 0 3
4 | 3 | HBP1±32

NO32±h2 0 0 1
4 | 1

2 0 1
4 | 2/3 1/3 1

4 | 1 0 1
4 | 6 | 1 0 3

4 | 2/3 1/3 3
4 | 1

2 0 3
4 | 0 0 3

4 | 6 |
NO32±h3 0 0 1

4 | 1
2 0 1

4 || 1
2 0 3

4 | 0 0 3
4 | 2/3 1/3 3

4 | 1
2

1
2

3
4 || 1

2
1
2

1
4 | 2/3 1/3 1

4 |
NO32±h4 0 0 0 | 2/3 1/3 0 | 1

2
1
2 0 | 1 1 0 | 6 | 1 1 1 | 2/3 1/3 1 | 1

2
1
2 1 | 0 0 1 | 6 | HAS1±32

NO32±h5 0 0 0 | 2/3 1/3 0 | 1
2 0 0 || 1

2 0 1 | 0 0 1 | 2/3 1/3 1 | 1
2

1
2 1 || 1

2
1
2 0 | ALB±32

NO32±h6 0 0 0 | 1
2 0 0 || 2/3 1/3 0 || 1

2
1
2 0 | 1

2
1
2

1
2 | 0 0 1

2 | 3 | HBP2±32

NO32±h7 0 0 0 | 1
2 0 0 || 2/3 1/3 0 || 1

2
1
2 0 | 1

2
1
2

1
2 | 1/3 2/3 1

2 | 0 0 1
2 | 3 | HBP3±32

NO32±h8 0 0 0 | 1
2 0 0 || 2/3 1/3 0 || 1

2
1
2 0 | 1

2
1
2

1
2 | 2/3 1/3 1

2 | 0 0 1
2 | 3 | HBP4±32

NO32±h9 0 0 0 || 2/3 1/3 0 || 1 0 0 | 1
2 0 0 | 1

2 0 1
2 | 2/3 1/3 1

2 | 0 0 1
2 | 3 |

NO32±h10 0 0 0 | 1
2 0 0 | 1 1 0 || 1 1ÿ1/3 | 1 1

2ÿ1/3 | 0 0ÿ1/3 || Q±32

NO32±t1 0 0 1
4 | 1

2 0 1
4 | 1

2 0 3
4 | 0 0 3

4 | 1
2

1
2

3
4 || 1

2
1
2

1
4 | TAD1±32

NO32±t2 0 0 1
4 | 1

2 0 1
4 | 1

2
1
2

1
4 | 1 0 1

4 | 4 | 1 0 3
4 | 1

2
1
2

3
4 | 1

2 0 3
4 | 0 0 3

4 | 4 |
NO32±t3 0 0 0 | 1

2
1
2 0 | 1

2 0 0 | 1 0 0 | 4 | 1 0 1 | 1
2

1
2 1 | 1

2 0 1 | 0 0 1 | 4 |
NO32±t4 0 0 0 | 1

2 0 0 | 1
2 0 1

2 | 1
2

1
2

1
2 || 1

2
1
2 0 | TAD2±32

NO32±t5 0 0 0 | 1
2

1
2 0 || 1

2
1
2

1
2 | 1

2 0 1
2 | 1

2 0 1 | 0 0 1 | 4 |
NO32±t6 0 0 0 || 1

2 0 0 | 1
2 0 1

2 | 0 0 1
2 | 1

2
1
2

1
2 || 1

2
1
2 0 | 0 1

2 0 ||
NO32±t7 0 0 0 || 1

2 0 0 | 1
2 0 1

2 | 1 0 1
2 | 1

2
1
2

1
2 || 1

2
1
2 0 | 0 1

2 0 ||
NO32±t8 0 0 0 || 1

2
1
2 0 || 1 0 0 | 1

2 0 0 | 1
2 0 1

2 | 1
2

1
2

1
2 | 0 0 1

2 ||
NO32±t9 0 0 0 | 1

2
1
2 0 || 1

2 0 0 | 1
2 0 1

2 | 1
2

1
2

1
2 || 1

2
1
2 1 || 1

2 0 1 | 0 0 1 | 4 |
NO32±t10 0 0 0 | 1

2 0 0 | 1
2

1
2 0 | 1

2
1
2

1
4 | 0 1 1

4 | 0 1 0 ||
NO32±t11 0 0 0 | 1

2 0 0 || 1
2 0 1 | 1

2
1
2 1 | 1

2
1
2

3
4 | 0 0 3

4 | 3 |
NO32±t12 0 0 0 || 1 0 0 | 3 | 1 0 1

4 | 1
2

1
2

1
4 | 1

2
1
2

1
2 | 1

2 0 1
2 | 0 0 1

2 | 3 |
NO32±t13 0 0 0 | 1

2 0 0 | 1
2ÿ1

2 0 | 1
2ÿ1

2
1
4 || 0 0 1

4 | 1
2

1
2

1
4 || 0 1 1

4 | 0 1 0 ||
NO32±t14 0 0 0 | 1

2 0 0 | 1
2 0 1

2 | 0 0 1
2 || 0 0 3

4 | 1
2

1
2

3
4 || 1

2
1
2

1
4 || 0 0 1

4 ||
NO32±t15 0 0 0 | 0 1

2 0 | 1
2

1
2 0 | 1

2 1 0 | 0 1 0 || 0 1 1
4 | 1

2
1
2

1
4 | 0 0 1

4 ||
NO32±t16 0 0 0 || 1

2 0 0 | 1
2

1
2 0 | 1

2
1
2

1
4 | 0 0 1

4 | 0 0 1
2 || 0 1

2
1
2 | 0 1

2 0 | TS1±32

NO32±t17 0 0 0 || 1
2 0 0 | 1

2
1
2 0 | 3 | 1

2
1
2

3
4 | 0 0 3

4 | 3 | 0 0 1 || 1
2 0 1 | 1

2 0 1
2 | 0 0 1

2 | 3 |

NO32±o1 0 0 1
4 | 1

2 0 1
4 || 1

2 1 1
4 | 1

2 1 3
4 || 1

2 0 3
4 | 0 0 3

4 | 0 1
2

3
4 | 0 1

2
1
4 |

NO32±o2 0 0 1
4 | 1

2 0 1
4 || 1

2 0 3
4 | 0 0 3

4 | 0 1
2

3
4 | 1

2
1
2

3
4 | 1

2 1 3
4 || 1

2 1 1
4 | 1

2
1
2

1
4 | 0 1

2
1
4 |

NO32±o3 0 0 0 | 1
2 0 0 || 1

2 0 1 | 1
2

1
2 1 | 0 1

2 1 | 0 1 1 | 1
2 1 1 || 1

2 1 0 | 1
2

1
2 0 | 0 1

2 0 |
NO32±o4 0 0 0 | 1

2 0 0 || 1
2 1 0 | 1

2 1 1
2 | 0 1 1

2 | 0 1
2

1
2 | 0 1

2 0 |
NO32±o5 0 0 0 || 0 1

2 0 || 0 1
2 1 || 0 0 1 | 1

2 0 1 | 1
2

1
2 1 | 1

2
1
2

1
2 | 1

2 0 1
2 | 0 0 1

2 |
NO32±o6 0 0 0 | 0 0 1

2 | 1
2 0 1

2 || 1
2 0 0 | 1

2
1
2 0 | 1

2
1
2

1
2 | 1

2 1 1
2 || 1

2 1 0 | 0 1 0 ||
oNO32±t5 0 0 0 | 1

2 0 0 | 1
2

1
2 0 | 1

2
1
2

1
2 | 0 1

2
1
2 | 0 1 1

2 | 0 1 0 || oTAD2±32

NO32±o7 0 0 0 || 1
2 0 0 | 1

2 0 1
2 || 1

2 1 1
2 | 0 1 1

2 || 0 1 0 || 1
2 1 0 | 1

2
1
2 0 | 0 1

2 0 | 0 1
2

1
2 | 0 0 1

2 ||

NO34±t1 0 0 0 || 0 0 1
2 | 0 1

2
1
2 | 1

2
1
2

1
2 || 1

2
1
2 0 | 0 1 0 || TS2±34

NO34±t2 0 0 0 || 0 0 1
2 || 0 1

2
1
2 | 1

2
1
2

1
2 || 1

2
1
2 0 | 1 0 0 | TS3±34

NO34±t3 0 0 0 || 0 1 0 || 0 1 1
2 | 3 | 0 0 1

2 | 3 | 1
2 0 1

2 | 1
2

1
2

1
2 || 1

2
1
2 0 |

NO38±t1 0ÿ1
2 0 | 1

2 0 0 || 1
2 0 1

4 || 1
2 1 1

4 || 1
2 1 1

2 | 0 1
2

1
2 || 0 1

2
1
4 || 0ÿ1

2
1
4 ||

NO38±t2 0 0 0 || 0 0 1
2 || 1 0 1

2 | 1
2

1
2

1
2 || 1

2
1
2 0 || 1

2ÿ1
2 0 | TS4±38



research papers

20 Koch � Minimal surfaces. II Acta Cryst. (2000). A56, 15±23

the ..d glide-re¯ection planes coincide for both groups,

whereas the z coordinates of their 4Å roto-inversion centres and

the directions of their glide vectors differ. Inversion through

the symmetry centre, e.g. at 1
4,

1
4,

1
4 (referred to origin choice 1 of

P42/nbc), yields the other two labyrinth groups. Their 4Å and

21.. axes have interchanged positions in comparison with the

®rst two labyrinth groups.

Any one of the eight labyrinths of an NO38±t1 surface is

adjacent to four other labyrinths belonging to two different

labyrinth groups. The 21.. axes of the original labyrinth coin-

cide with the 4Å axes of the four neighbouring labyrinths.

Considered together, the vertices of the eight labyrinth

graphs corresponding to an NO38±t1 surface as described

in Table 2 form a point con®guration 4(d) 0, 0, 0 of P42/nbc,

i.e. a tetragonal Cc con®guration (cf. International Tables for

Crystallography, 1987, Vol. A, ch. 14). The vertex at 0, 0, 0 is

connected to four other vertices, namely to 0, 1, 1
2, to 0, ÿ1, 1

2,

to 1, 0, ÿ1
2 and to ÿ1, 0, ÿ1

2 (cf. Fig. 9). The vertices of a single

labyrinth graph correspond to a tetragonal deformed D

con®guration.

According to the index 4 of G in NE(G), there exist four

congruent NO38±t1 surfaces with identical symmetry group G

but with different labyrinth groups Ulab.

The eight-colour space group corresponding to a certain

group±subgroup pair P42/nbc±I4Å2d (2a, 2b, 2c) may be

generated for example by the following pairs of symmetry

operations and permutations of eight elements or colours:

t �1; 0; 0� �14��23��58��67�;
t �0; 1; 0� �13��24��57��68�;
t �0; 0; 1� �12��34��56��78�;
2 0; 0; z �1��2��3��4��56��78�;
4� �0; 0; 1

2� 0; 1
2 ; z �1835��2746�;

2 0; y; 1
4 �14��23��58��67�;

�1 1
4 ;

1
4 ;

1
4 �18��27��36��45�:

The generated permutation group has the order 64 and

consists of even permutations only. It is not isomorphic to

Figure 9
Vertices of the eight labyrinth graphs of an NO38±t1 surface. Edges are
shown only for two labyrinth graphs.

Figure 8
Subgroup diagram referring to an NO38±t1 surface [G: symmetry group
of the minimal surface; NE(G): Euclidean normalizer of G; Ulab:
symmetry group of a labyrinth; NE(Ulab): Euclidean normalizer of Ulab;
G \ NE(Ulab): intersection group of G and NE(Ulab)].

Figure 7
Part of an NO34±t1 surface with symmetry G = P422. One unit cell of
Ulab = I4122 (a ÿ b, a + b, 4c) is shown. Polygon edges with self-
intersections are marked in red.



any crystallographic point group in R3 but it is the p-Sylow

group ( p = 2) in A8, where A8 is the alternating group of

degree 8, i.e. the group of all even permutations of eight

elements (cf. e.g. Hall & Senior, 1964).

An NO38±t2 surface with symmetry I422 also gives rise to

eight congruent labyrinths (cf. Fig. 10). Each corresponding

labyrinth group Ulab belongs to type I4122 with a0 = 2a, b0 = 2b
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Figure 13
Part of an OR32±h2 surface with symmetry G = P622. One unit cell of
Ulab = P6322 (2c) is shown. Polygon edges with threefold self-intersec-
tions are marked in yellow.

Figure 12
Vertices of the eight labyrinth graphs of an NO38±t2 surface. Edges are
shown only for two labyrinth graphs.

Figure 11
Subgroup diagram referring to an NO38±t2 surface [G: symmetry group
of the minimal surface; NE(G): Euclidean normalizer of G; Ulab:
symmetry group of a labyrinth; NE(Ulab): Euclidean normalizer of Ulab;
G \ NE(Ulab): intersection group of G and NE(Ulab)].

Figure 10
Part of an NO38±t2 surface with symmetry G = I422. Half of a unit cell of
Ulab = I4122 (2a, 2b, 2c) is shown. Polygon edges with self-intersections
are marked in red.
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and c0 = 2c and has index 8. The relations between the groups

G, Ulab, NE(G), NE(Ulab) and G \ NE(Ulab) of an NO38±t2

surface (cf. Fig. 11) are quite analogous to those for an NO38±

t1 surface (cf. Fig. 8). Accordingly, each space group of type

I422 has 16 Euclidean-equivalent subgroups of type I4122 with

a0 = 2a, b0 = 2b and c0 = 2c, four times four of which are

conjugate in I422, i.e. each space group of type I422 corre-

sponds to four congruent NO38±t2 surfaces which differ in

their labyrinth groups. Two of the eight labyrinths of each

surface have the same labyrinth group and are shifted against

each other by a vector c. A second labyrinth group of a surface

may be derived from a given ®rst one with the aid of a

translation by a vector a, i.e. the 41 and 43 axes of the two

labyrinth groups interchange their positions. The other two

labyrinth groups have their 2.. axes at the positions of the 41

and 43 axes of the ®rst ones.

Again, each labyrinth is adjacent to four other labyrinths

belonging to two different labyrinth groups. The 2.. axes of the

original labyrinth coincide with the 41 and 43 axes of its four

neighbouring labyrinths.

Considered together, the vertices of the eight labyrinth

graphs of an NO38±t2 surface [I422 4(d) 0, 1
2,

1
4] also form a Cc

con®guration, but it is shifted by the vector (0, 1
2,

1
4) against the

origin of I422. The vertex at 0, 1
2,

1
4 is connected to 0, 3

2, ÿ1
4, to

0, ÿ 3
2, ÿ1

4, to 1, 0, 3
4 and to ÿ1, 0, 3

4. Again, the vertices of each

single labyrinth graph form a tetragonal D con®guration, but

the relative positions of the eight D con®gurations of an

NO38±t2 surface differ from those referring to an NO38±t1

surface (cf. Fig. 12).

The following pairs of symmetry operations and permuta-

tions of eight elements (colours) generate the eight-colour

space group corresponding to I422±I4122 (2a, 2b, 2c):

t �1; 0; 0� �14��23��58��67�;
t �0; 1; 0� �13��24��57��68�;
t �0; 0; 1� �12��34��56��78�;
t � 1

2 ;
1
2 ;

1
2 � �16��25��38��47�;

2 0; 0; z �13��24��58��67�;
4� 0; 0; z �1835��2746�;
2 0; y; 0 �14��23��56��78�:

Although these permutations differ from those for an NO38±

t1 surface, the same permutation group with order 64 is

generated.

3. Orientable minimal surfaces

Only three families of self-intersecting orientable minimal

surfaces which subdivide R3 into two labyrinths are known so

far. They are listed in Tables 3 and 4, which are similar to

Tables 1 and 2. The symmetry of such an orientable surface is

described by a group±subgroup pair G±S with index 2 in the

second column of Table 3. Again, G means the full symmetry

of the surface whereas S describes the symmetry of the

oriented surface. The site symmetry (if necessary) of a surface

patch is displayed in column 3. The Euler characteristic � is

referred to a primitive unit cell of S, as usual for orientable

surfaces.

In all three cases, the symmetry group Ulab of the two

labyrinths and the symmetry group S of the oriented surface

are identical. A necessary and suf®cient condition for this

identity is the following: Along all lines of self-intersection,

three parts of the minimal surface intersect and each line of

self-intersection corresponds (at least topologically) to a

sixfold rotation axis of G and to a threefold rotation axis of S.

The only minimal surfaces known so far showing exclusively

threefold self-intersections are those listed in Tables 3 and 4.

As a consequence of the equivalence of S and Ulab, � = �lab

holds in all three cases. As an example, part of an OR32±h2

surface is shown in Fig. 13.

No self-intersecting orientable minimal surfaces with

S 6� Ulab, which subdivide R3 into in®nite three-periodic

labyrinths, are known so far. It is an open question whether or

not such surfaces can exist in principle. All known orientable

minimal surfaces with S 6� Ulab subdivide R3 either into ®nite

`polyhedra' or into one-periodic `tubes'.

The author wishes to thank Dr H. Sowa (Marburg), who

®rst proposed the generating polygon for the NO38±t1

surfaces, and Professor Dr W. Fischer (Marburg) for helpful

discussions.

Table 3
Orientable minimal surfaces.

Minimal surface Labyrinths

Symbol Space-group pair G±S Site symmetry Generating polygon � b Symmetry Ulab nlab �lab

OR32±h1 P6/mcc ± P6Å2c m.. 6-gon ÿ8 ± P6Å2c 2 ÿ8
OR32±h2 P622 ± P6322 (2c) 5-gon ÿ8 ± P6322 (2c) 2 ÿ8

OR32±t1 P4222 ± P4322 (2c) 6-gon ÿ8 ± P4322 (2c) 2 ÿ8

Table 4
Generating polygons of orientable minimal surfaces.

Symbol Generating polygon Previous symbol

OR32±h1 0 0 1
4 | 2/3 1/3 1

4 | 1
2 0 1

4 | 1
2 0 3

4 | 2/3 1/3 3
4 | 0 0 3

4 | 3 | HAT1±32

OR32±h2 0 0 0 | 2/3 1/3 0 | 1
2 0 0 | 1

2 0 1
2 | 0 0 1

2 | 3 | HAT2±32

OR32±t1 0 0 0 | 1
2 0 0 | 1

2 0 1
2 | 1

2
1
2

1
2 | 1

2
1
2

3
4 | 0 0 3

4 | 3 |
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